
iV-d,,/'

/" d"

Final Report

Cooperation among Theorem Provers

Prepared for:

Dr. Michael Lowry
NASA Ames Research Center

M/S 269-2
Moffett Fieht. CA 94035-1000

Prepared })\':

Dr. 12ichard .]. \Vahtinger

Principal Scientist

Artificial Intelligence Center

The following individuals are authorized to conduct negotiations

on behalf of StlI International:

Technical matters:

Dr. Richard .l. Waldinger. Principal Scicntisr

(650) $59-2"216 e-maih waldingcr_:ai.sri.com Fax: (6.50) ,_o9-3,3o

Contractual Matters:

Donna Linnd, Sr. Contracts Administrator

(650) $59-20(14 e-mail: linne'_sri.com Fax: (650) 859-6t71

October S. 199S

333 Ravenswood Avenue • Mer_toPark. CA 94025-3493 • (415) 326-6200 • .FAX:(4t5) 326-55! 2 • ++q'_l__;,, 3,t_436__

1 Background

This is a final report oil tile "'Cooperation among Theorem Provers" project, which supports

NASA's PECSEE (Persistent Cognizant Software Engineering Environment) effort and com-

plements tile Kestrel Institute project "'Inference System Integration via Logic Morphisnls".

The ultimate purpose of the project is to develop a superior logical inference mechanism bv

combining the diverse abilities of multiple cooperating theorem provers.

In many }'ears of research, a number of powerflfl theorem-proving systems have arisen

with differing capabilities and strengths. Resolution theorem provers (such as Kestrel's

KITP or SRI's sx.._,RI<) deal with first-order logic with equality but not the principle of

mathematical induction. The Borer-Moore theorem prover excels at proof by induction but

cannot deal with full first-order logic. Both are highly automated but cannot accept user

guidance easily. The pvs system (from SRI) in only automatic within decidable theories, but

it has well-designed interactive capabilities: furthermore, it includes higher-order logic, not

just first-order logic. The .'x-uPlRL system from Cornell University and the STeP system from

Stanford University have facilities for constructive logic aald temporal logic, respectively--

both are interactive.

It is often suggested--for example, in the anonymous "'QED Manifesto"--that we should

pool the resources of all these theorem provers into a single system, so that the strengths of

one can compensate for the weaknesses of others, and st) that effort will not be duplicated.

However, there is no straightforward way of doing this. because each system relies on its own

language and logic for its success. Thus. s.x'.-_.Rt,: uses ordinary first-order logic with equality,

p\'s uses higher-order logic, and NuPRL uses constructive logic.

The purpose of this project, and the companion project at Kestrel. has been to use the

category-theoretic notion of logic nlorphism to combine systems with different logics and

languages. I(esrrel's SPECWARE system has been the vehicle for the implementation.

2 SPECWARE

I{estrel's SPECWARE is a category-theory-based software development environment. It ex-

ploits category theory to capture two flmdamental notions: the refinement of specifications

into code and the composition of software components.

The fundanwntal objects of SPECWARE are specifications and the morphisn_s between

them. SPE(;'\VAIIE uses tile word "'specification" in an ullcoiilltlonly general way--it includes

theories and code as well as high-level descriptions of software. A morphism is a kind of

mapping between specifications that indicates how one specification--the source--can be

viewed as a subtheorv of another specification -the target. A morphism identifies each

symbol of the source theory with a corresponding symbol in the target theory, in such a

way that the theorems of the source theory are mapped into theorems of the target theory.

For SI'E('\\'AI/E to verify a morphism, it must prove that each axiom of the source theory is

mapped into a theorem of the target theory. For this purpose, it contains its own theoreln

prover. K IT P.

To capture the notion of software refinement, SPF,(;\V..\tlI-2 uses the category-theoretic

concept of an interpretation. The St'I.:CWAI_ b: notion of software conlposition is based on the

category-theoreticconceptof a colimit. Both of theseconceptsarebasedon morphislns. For

instance, a refinement is a mort)hisnl from a source theory into a mediator--not the target

theory itself but an extension of the target in wlfich new concepts have been defined.

The essence of the Kestrel approach to combining two theorem provers is to build a

refinement between their logical systems. However. in an ordinary refinement, both theories

must have the same logical inference system, while different theorem provers are based on

different logical systems. To s,nooth over these anomalies. Kestrel employs the notion of an

inter-logic refinement, based on Meseguer's concept of a logic morphism.

Ahhough Kestrel has formulated the principles of the inter-logic refinement. SPECWARE

does not support this refinement in the way it supports the single-logic refinement. In

support of this project, a new inter-logic morphism must be buih between SPECWARE and

eacll theorem prover to be connected. The frst system to be connected (after Kestrels own

KITP) has been SRI's SNARK. Since the inter-logic nlorphism is not vet imt)lemented, this

has been clone using primitives of the underlying implementation language. REFINE. This

experiment will guide future develot)ment of tile implementation of the inter-logic morphism

within SPE('WARE.

3 SNARK

SN.-\I_I`/ is SRI's theorem prover for first-order logic with equality, based on resolution.

parainodulatio,l, and tern>rewriting inference rules. SNARl`/ has built-in associative and

commutative unification algorithms, and facilities for inserting new unification algorithms

this means SNARl< caI1 deal ei:fcienth with theories with conmmtative or associative oper-

Ators. It also has a built-in decision procedu,'e for temporal reasoning, using tile temporal

pritnitives of James Allen. SNARK has a sort structure, and its unification algorithms are

cognizant of that structure so that terms of mismatched sorts cannot be unified. SNARK

strategies can easih be altered or replaced by the SNAI/K user. Ill particular, its agenda-

ordering strategy can be changed by providing a new LISP function, and SNARl< Call follow

a user-supplied symbol ordering so that "'bad" symbols will tend to be replaced by "'good"

symbols.

SNARl`/ has been enlployed by NASA AS tile flmdanlental reasoning component of the

Anlphion system. It has been augnlented by NASA in several ways: in particular, ill Meta-

Anlphion. facilities have }men introduced for identifying sets of axioms that can be removed

and replaced by decision procedures, with dramatic ilnt)rovements of et-fciencv.

Part of the reason for wanting to combine SNARl,/ And SPEC\VAFIF is to use SPEC\VA|/E's

notion of morphisnl to formalize the search for a decidable subtheorv. If SPECWARI" is given

a library of decidable theories, we can look for morphisnls from any of those theories into

the theory at hand--the inlage of a decidable theory will be a decidable subtheorv.

4 The SPECWARE-SNARK interface

StRI has collaborated with the Kestrel Institute in buihling a SPHCWAt/[.;-SN.\RK interface.

SRI's part of the effort has consisted of inlproving SN.\t_K's own interface, working with

Kestrel personnel on the design of the St'ECWARE-SNARI< interface, and selecting defauh

values for SNARK parameters when it is invoked by SPE(.!W._,RE:;. Our ideal has been that the

theorem prover shouhl be invisible to tile naive user, but that the knowledgeable user should

have fitll access to SN..\Rb:'s capabilities.

For instance, the initial t)arameter settings cause the search for a proof, and the proof

itself, to be invisible to the user. who simply receives a report that the theorems have

been proved and the morphism verified. The selection of defauhs varies according to the

application: for instance, in normal theorem proving, hyperresolution is employed, but if a

witness is to be extracted from the proof, binary resolution is invoked instead. This is because

hyperresolution is more effective in general, but is incompatible with witness-finding.

Should the proof fail. the user may change the settings to exhibit the failed proof attempt

and, if necessary, alter the inference rules, parameter settings, or strategy. But this requires

a more educated user.

5 A Verification Example

Let us examine an example of a verification prbblem. We are given the specification for a

bit.

spec BIT is

sort Bit

op bit-O :

op bit-I

axiom (not

axiom (fa

Bit

: Bit

(equal bit-O bit-l))

(x : Bit) (or (equal x bit-O) (equal x bit-l)))

constructors £bit-O, bit-l} construct BIT

op bit-plus : Bit, Bit -> Bit

definition of bit-plus : Bit, Bit -> Bit is

axiom (equal (bit-plus bit-O bit-O) bit-O)

axiom (equal (bit-plus bit-O bit-l) bit-l)

axiom (equal (bit-plus bit-i bit-O) bit-l)

axiom (equal (bit-plus bit-I bit-l) bit-O)

end-definition

op bit-carry : Bit, Bit -> Bit

definition of bit-carry is

axiom (equal (bit-carry bit-O bit-O) bit-O)

axiom (equal (bit-carry bit-O bit-l) bit-O)

axiom (equal (bit-carry bit-I bit-O) bit-O)

axiom (equal (bit-carry bit-i bit-l) bit-l)

4

end-definition

op bit-and : Bit, Bit -> Bit

definition of bit-and is

axiom (equal (bit-and bit-O bit-O)

axiom (equal (bit-and bit-O bit-l)

axiom (equal (bit-and bit-i bit-O)

axiom (equal (bit-and bit-i bit-l)

end-definition

bit-O)

bit-O)

bit-O)

bit-l)

theorem bit-and-carry is (equal (bit-and bl b2) (bit-carry bl b2))

theorem bit-and-carry-iff is

(iff (equal (bit-and bl b2) bit-l)

(equal (bit-carry bl b2) bit-l))

theorem bit-and is

(iff (equal (bit-and bl b2) bit-l)

(and (equal bl bit-l) (equal b2 bit-l)))

<Some operations and theorems omitted.>

end-spec

hi other words, there are two }>it constants, bit-O and bit-1, each of sort Bit. The first

axioni asserts that these two bits are distinct. The second asserts that every bit is either

bit-0 or bit-1. The constructors statement amounts to an induction principle, which

states that to prove a property for all bits. it suffices to prove that it holds for bit-0 and

bit-1. This is a degenerate version of induction, in which there are two base cases and no

induction step. (Actually the second axioni follows floni this induction principle, and so

could have been stated as a theorem.)

Then conies the definition of several fiuictions on bits. The function bit-plus is binary

addition of })its: for exaniple.

axiom (equal (bit-plus bit-I bit-l) bit-O)

says that the result of adding bit-i to itself is bit-O.

The function bit-carry gives the bit that is carried when two bits are added. In fact,

this t_it is bit-1 when bit-1 is added to itself: in all other cases, it is bit-0.

The flulction bit-and gives the logical conjunction of two bits, regarded as truth values.

Thus. the conjunction of bit-O and bit-i is bit-O, a:l([so on.

A sequence of theorenis about })it addition and other functions is included in the spec-

ification. The first states that the bit carry function is actually identical to the logical

conjunction of bits:

theorem bit-and-carry is (equal (bit-and bl b2) (bit-carry bl b2))

5

Let us follow the interaction that allows this ttworem to be proved.

First we inform sx..\l_l< (by setting its focus to verification) that only theoreul proving

is required, no witness generation. This is done by selecting an item from a menu. _,_,'edo

not change the default settings--hyperresolution, paramodulation, recursive-path ordering

(the term-ordering strategy), etc. for a verification proof. Menus for SNAHK feature selection

do not exist in pure SNAIqI<: they were inlplemented as part of the interface, because the

SPECWARE user expects analogous interfaces for SNARK and KITP.

We customize the interface; in particular, we elect to choose which conjectures from the

specification are to be proven: otherwise, the system will attempt to prove all of them. \Ve

also elect to chose proof options for each batch of conjectures--this will enable us to decide

what form of induction principle to use, and to set certain strategic controls if we choose to.

\Ve indicate how detailed we wouhl like the trace of the proof to appear.

In setting the SPEC\VARE focus, we choose to verify the specification BIT. _,\'e elect to

do an induction proof, by induction on bJ. over {bit-l,bit-O}--this is one of two options

offered. After this. the proof is automatic. In the trace below, which shows the proof of one

of the two base cases, we show more than the naive user wouht see--normalh, one would

onh learn that the conjecture had been verified.

.> ;;; Verify conjecture

;;; fa(b2: Bit, bl: Bit) bit-and(bl, b2) = bit-carry(bl, b2)

;;; by induction on bl over {bit-l,bit-O}

Warning: Setting *PRINT-PRETTY* to NIL.

gc: done

The current SNARK option values are

use-hyperresolution = T

use-paramodulation = T

use-factoring = T

use-term-ordering = :RECURSIVE-PATH

use-replacement-resolution-with-x=x = T

agenda-length-before-simplification-limit = I0000

agenda-length-limit = 3000

agenda-ordering-function = ROW-WEIGHT+DEPTH

pruning-tests = (ROW-WEIGHT-ABOVE-LIMIT-P)

pruning-tests-before-simplification =

(ROW-WEIGHT-BEFORE-SIMPLIFICATION-ABOVE-LIMIT-P)

use-clausification = T

use-and-splitting = T

Refutation:

1: (= ?X ?X)

assertion

3: (OR (= ?X SPEC::BIT-O) (= ?X SPEC::BIT-I))

assertion

8: (= (SPEC::BIT-CARRY SPEC::BIT-O SPEC::BIT-O) SPEC::BIT-O)

assertion

10: (= (SPEC::BIT-CARRY SPEC::BIT-I SPEC::BIT-O) SPEC::BIT-O)

assertion

Ii: (= (SPEC::BIT-CAKRY SPEC::BIT-I SPEC::BIT-I) SPEC::BIT-I)

assertion

14: (= (SPEC::BIT-AND SPEC::BIT-O SPEC::BIT-O) SPEC::BIT-O)

assertion

16: (= (SPEC::BIT-AND SPEC::BIT-I SPEC::BIT-O) SPEC::BIT-O)

assertion

17: (= (SPEC::BIT-AND SPEC::BIT-I SPEC::BIT-I) SPEC::BIT-I)

assertion

18: (NOT (= (SPEC::BIT-AND SPEC::BIT-I#:SKI)

(SPEC::BIT-CARRY SPEC::BIT:I #:SKI)))

-conclusion

21: (OR (= ?X SPEC::BIT-I) (= (SPEC::BIT-AND SPEC::BIT-I ?X) ?X))

paramodulate 16 by 3

23: (OR (= ?X SPEC::BIT-I) (= (SPEC::BIT-AND ?X ?X) ?X))

paramodulate 14 by 3

24: (OR (= ?X SPEC::BIT-I) (= (SPEC::BIT-CARRY SPEC::BIT-I ?X) ?X))

paramodulate i0 by 3

26: (OR (= ?X SPEC::BIT-I) (= (SPEC::BIT-CARRY ?X ?X) ?X))

paramodulate 8 by S

68: (OR (= #:SKi SPEC::BIT-I)

(NOT (= #:SKI (SPEC::BIT-CARRY SPEC::BIT-I #:SKi))))

102: (= (SPEC::BIT-AND ?X ?X) ?X)

144: (= (SPEC::BIT-CARRY ?X ?X) ?X)

287: (= #:SKI SPEC::BIT-I)

288: FALSE

paramodulate 18 by 21

paramodulate 17 by 23

paramodulate ii by 26

hyperresolve 68,24

rewrite 18 by I, 144,

102, 287

;; Summary of computation:

;; 529 formulas have been input or derived (from 43 formulas).

;; 288 (54Z) were retained. Of these,

;; 30 (lOZ) were simplified or subsumed later,

7

0 (OY,) were deleted later because the agenda was full, and
258 (90Y,) are still being kept.

;; Run time by activity in seconds
;; excluding printing time:
;; 0.11

;; 5.05

;; 0.01

;; 20.10

;; 3.65

;; 3.04

;; 0.12

;; 0.12

;; 6.24

;; 38.44

OZ Resolution

13_ Paramodulation

OZ Factoring

52_ Forward subsumption

9_ Backward subsumption

8% Forward simplification

0% Backward simplification

0% Equality ordering

16_ Other

Total

Snark result PROOF-FOUND PROOF-FOUND

;;; Verified conjecture Bit-And-Carry.

;;; Verified the 1 conjecture attempted.

_Note that the SPE('\\'ARE syntax Nan been translated into SNARl,; SVl:rax (via REFINE

rewriting). Thus the negation of one of the base cases of tile SPEC\V._,RE conjecture.

(not (fa (b2 : Bit)

(equal (bit-and bit-I b2)

(bit-carry bit-I b2))))

has bee:: translated into

(NOT (= (SPEC::BIT-AND SPEC::BIT-I #:SK1)

(SPEC::BiT-CARRY SPEC::BIT-I #:SKI)))

The SPEC\V.\RE equal has])eel: translated into tt:e SNARl< =. Specware symbols have

been prefixed by SPEC: : to avoid na:ne clashes. Also. the quantifier fa has })eel: renioved

and the quantified variable b2 has been replaced by the skolem constant # :SK1, t)v SNARl,:

skolemization, not])v the interface.

This interface has hem: completed and tested successfulh on several SPECW.\I/E theories.

including the theorems for a specification for bit-vectors, a theory of pictures for the auto-

mated construction of visualizations of structures, amt a formulation of semi-lattice theory

for a.-\v.\ byte-code verification. SRI has also collaborated with Kestrel and NASA person-

nel on the design of hooks to allow the Meta-Amphion application to invoke SNARK via

SPE('WARE.

6 Remaining Work

With experience we may see ways to improve the SN.-\I: I<-SPI_C\V.\RI:: interface. SoI:le of lhcse

in'ol>lems are as follows:

higher-order functions. SPECWAItE logic is higher order, while SN.XRK is a first-order

theorem prover. The interface makes no attenlpt to translate higher-order fltnctions

and predicates into first-order logic, e.g.. via reification.

sorts. The interface translates SPECWARE sorts into SNARK sorts, which is economical.

However, there is no attempt to deal with such complex SPECWARE sorts as the qu.o-

tient, product, or co-product, for which SNARK has no equivalent: presumably, this

should be clone by sort axioms, as in KITP. Also. SPECWARE subsorts are mapped into

distinct sorts, not into SNARK subsorts. (In SPECWAttE, as ill all category theory, an

element of a subsort is not regarded as an element of its supersort; in SNARK, it is.

associative-commutative unification. If associative and commutative axioms are pro-

vided, syar/l_: will recognize them. remove them from the axiom base, and use associative-

conmmtative unification instead. Other than this. there is no mechanism by which a

user may declare a flmction or predicate svmboI to be associative or commutative.

witness-finding. SNAIIK has a witness-finding capability, and a LISP function has been pro-

vided by which a SPE(:WARE user may invoke SN.-kRN witness-finding for a SPEC\\'ARE

theorem. However. SPEC\V.XRE has no mechanism for referring to a witness within the

specification itself, and theoretical obstacles exists for introducing such a mechanism,

unless the theorem establishes uniqueness.

strategic controls. The SPECWARE user is given no way of introducing a term ordering.

an agenda-ordering flmction, or symbol weights for specializing SNARK to a particular

subject domain: he or she must be happy with the defaults.

treatment of logic morphisms. Whereas the ordinary mort)hism is a construct supported

bv SPECWARE. the inter-logic morphism is not. Construction of the morphism between

SPE('WARE and SN..\ttK required a lot of ad hoc programming in REFINE. While some

of this is unavoidable (e.g.. menu design), nmch of it can be systematized (e.g.. the

translation between languages). The plan is to introduce the inter-logic morphism into
SPECWARE as a first-class citizen.

Interfaces between SPECWARE and other theorem-provers, such as pxs. remain to be

constructed. This effort will be facilitated if the results of the experience of integrating

SPECWARE an(l SNARl{ can inform the develoi)ment of an init)lementation of the inter-logic

morphism within SPECWARE.

